

 Analysis Best Practices

6 Tips for Creating and Deploying Scripts using Analysis using NodeJS

Analysis allows you to manipulate incoming and stored data in realtime. TagoIO currently supports scripts in

node.js and python 3 when using our servers (internal mode), but you can use other languages when running it

on your own server (external mode). Here are six tips to help you to get the most out of the Analysis tool.

1. Use console.log and the Analysis

console to output errors

When using Analysis on TagoIO, in internal mode,

you can only find errors in your code through the

console. When you run scripts on your machine, you

may have multiple ways of debugging your code.

That being said, it's very important that you use

console.log to output any errors or important

information from your Analysis. This will help you

track down any error you might run into.

How to:

1. Write in your code:

context.log("message here");

2. Use the Utils lib from SDK to

speed up coding time

The Utils lib from our node.js SDK has different

functions to save you time and to help you write

quality code.

One of the many basic functions presented in many

script examples at TagoIO is the envToObj function

that transforms environment variables into an easily

handled object. You will find many other functions to

handle data and get device tokens.

How to:

1. Import the utils lib in your code by:

 const { Utils } = require("@tago-io/sdk");

2. Use the functions

For more information:

https://js.sdk.tago.io/

 4. Make use of the CLI

The TagoIO CLI is very useful for creating and

deploying Analysis since it allows users to easily

develop analyses in external mode while also

encrypting their profile tokens.

After the development process is finished, to deploy

their Analysis, all you have to do is run “tagoio deploy”

and chose the Analysis you want to deploy. The CLI

will automatically build the JavaScript code, send it to

TagoIO and enable internal mode.

How to:

1. Open your terminal

2. Install the CLI

 npm i -g @tago-io/cli

3. Install the Analysis-builder

 npm i -g @tago-io/builder

4. Navigate to your project folder

5. Login to the CLI

6. Select the Analyses you want to develop

7. Deploy the finished Analyses to TagoIO

For more information:

https://github.com/tago-io/tagoio-cli#readme

3. Make use of the Audit log

The Audit log is one of the best developer helper tools

that you will find at TagoIO. Through it, you can check

if an Analysis was triggered, when, and what event

triggered it.

You can also check if you had any problem with the

email or sms service.

How to:

1. Click on your name at the upper-right corner of the

admin.

2. Go to the Audit Log option.

3. Select Analysis in resource type.

4. Select your analysis in the Analysis dropdown.

5. Give your Analysis the necessary

permissions

In order for your Analyses to work as expected, they

need to be granted access to the resources they

utilize. This can be done by creating a Policy for your

Analysis in the Access Management module.

All you have to do is select your Analysis as the target,

select the resources it will use, and specify what

actions the Analysis will be able to do with each

resource.

Example:

1. Go to Access Management.

2. Select the Analysis.

3. Configure the permissions.

6. Make sure you don’t receive

throughput limit errors

During the execution of your Analysis it's possible to

run into a throughput limit error. A throughput limit

error can be caused by your Analysis sending too

many API requests and overloading it, and this

causes the server to end your service.

There are a few ways to avoid this; when sending a

larger quantity of requests it's best to use Queues and

Pagination. Queues allow you to send batches of

requests in a query. Allowing you to send, for

example, 5 requests simultaneously without causing

a throughput limit.

Example:

const device_list = await Resources.devices.listStreaming();

const deleteDevice = async (device) => await

Resources.devices.delete(device.id);

const deleteQueue = queue(deleteDevice, 5);

if (device_list) {

 for await (const devices of device_list) {

 for (const device of devices) {

 void deleteQueue.push(device);

 }

 }

}

if (deleteQueue.started) {

 await deleteQueue.drain();

}

For more information…

Get access to our complete documentation at https://help.tago.io/portal/

Join our community and ask questions at http://community.tago.io/

Watch our tutorials, webinars, and other videos at http://tago.io/videos/

Checkout the Learning Center at http://tago.io/learning-center/

